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Summary

Glucocorticoid (GC)s exert anti-inflammatory effects via binding to the glucocorticoid receptor 
(GR) (NR3C1), targeted gene expression, and protein synthesis, which need hours before the onset 
of the action (transactivation). GCs also suppress inflammation by direct or indirect interaction with 
transcription factors, such as activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) (transrepression). 
Recently, the non-genomic actions of GCs were discovered on recognition of its rapid onset of action 
within seconds to minutes.

GCs target many cells and tissues, including immune and inflammatory cells, airway epithelium, 
and airway smooth muscle (ASM). Of these, ASM is involved in altered airway contractility. A recent 
study demonstrated that GCs not only suppress inflammation but also exert direct effects on ASM 
gene expression which influence ASM function.

GC resistance in the treatment of bronchial asthma remains a considerable clinical problem. 
Genes and cellular inflammatory phenotypes of glucocorticoid-resistant (GC-R) asthma have been 
revealed. Inflammation-associated protein kinase signaling and transcription factors affect GC actions 
through modulating GR function. Involvement of chromatin modifications have also been reported. 
Infection, reduced Vitamin D (Vit D), smoking, and obesity are preventable risk factors in GC-R asthma.

Some of these recently available results are presented in this review.

Lymphopoietin: VANGL1: VANGL Planar Cell Polarity Protein 1; 
Vit D: Vitamin D 

Introduction
Several steroids were isolated from the adrenal cortex during the 

1940s by Edward Kendall. GR was cloned and expressed in 1985 [1]. 
GCs can have an anti-inflammatory effect and a pro-apoptotic action 
for disease therapy. Administration of adrenal extracts was first 
reported to reduce the frequency of exacerbationsof asthma in 1900 
[2]. Clinical trials of inhaled steroid in asthma were started in about 
1970 [3,4]. Now, there is widespread use of GCs in patients with 
bronchial asthma, via oral, intravenous, and especially inhalation 
routes. However, the complete picture of GC and GR function 
remains to be elucidated.

The actions of GCs are a fast-moving and exciting research 
field. In this review, recent advances (over the last 2 to 3 years) in 
understanding the action and molecular mechanisms of GCs that 
are believed to promote anti-inflammatory effects in bronchial 
asthma, especially, recent findings on non-genomic effects of GCs, 
the mechanism by which GCs suppress inflammation and improve 
function in ASM, and GC resistance in bronchial asthma are 
summarized and discussed.

Mechanisms of action of GC

GCs exert pro and anti-inflammatory effects by both gene 
induction and repression. GCs act by binding to GR. Activated GRs 
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can drive gene transcription via binding onto GC response elements 
(GREs) located in the promoter proximal region of the target 
gene. A number of genes that exhibit anti-inflammatory actions, 
including glucocorticoid-induced leucine zipper (GILZ), dual-
specificity phosphatase 1 (DUSP1), and mitogen-activated protein 
kinase phosphatase (MKP)-1, are upregulated via a transactivation 
mechanism. In many GR-binding sites located far from the promoter 
proximal region of the target genes, binding of GR to chromatin 
may occur by tethering to other transcription factors [5]. GCs 
transcriptionally repress thymic stromal lymphopoietin (TSLP) 
through direct binding of GR to negative glucocorticoid response 
element (nGRE) [6]. GR also can actively repress target gene 
transcription by recruiting corepressors [7].

Nuclear GRs interact directly or indirectly with coactivator 
molecules. Switching off inflammatory genes through interactions 
with transcription factors, such as AP-1, NF-κB, cAMP response 
element binding protein (CREB), nuclear factor of activated T-cells 
(NF-AT), signal transducer and activator of transcription (STAT) 6,  
interferon (IFN) regulatory factor (IRF) 3, STAT3, GATA binding 
protein 3 (GATA-3), and T-box transcription factor (T-bet), may be 
the major effect of GCs.

GCs act through a combination of direct inhibition of histone 
acetyltransferase (HAT) activity and recruitment of histone 
deacetylase (HDAC) to the activated transcriptional complex. Low 
concentrations of GCs can switch off inflammatory genes through the 
recruitment of HDAC2. HDAC2 acts by deacetylating GR, thereby 
enabling p65–NF-κB association and attenuation of proinflammatory 
gene transcription [8].

Recent interest in the mechanism of action of GCs is their non-
genomic action. A latency of several hours is required before the 
onset of the genomic effects of GCs in the complex process, including 
ligand-receptor binding, gene expression, and protein synthesis. GCs 
also induce rapid non-genomic responses in seconds to minutes. 
The non-genomic effects of GC in asthma are becoming clearer. A 
physical and functional interaction between the GR and the T-cell 
receptor (TCR) complex [9] and membrane-bound GR induced 
phosphorylation of p38 mitogen-activated protein kinase (MAPK) 
due to DEX/bovine serum albumin (BSA) treatment [10] has been 
reported. Low concentrations of DEX rapidly regulate intracellular 
pH, Ca2+ and cAMP-dependent protein kinase activity, and inhibit 
Cl- secretion in bronchial epithelial cells via nongenomic mechanisms 
[11]. A recent study showed that inhaled fluticasone propionate (FP) 
and budesonide (BUD) stimulate cystic fibrosis transmembrane 
conductance regulator (CFTR)-mediated anion transport through 
adenylate cyclase-mediated mechanisms in a nongenomic fashion 
[12]. In addition to their anti-inflammatory properties, GCs attenuate 
ASM contractility through non-genomic effects. It is reported that 
BUD can rapidly inhibit histamine-induced contractions of airway 
smooth muscle through a process mediated by non-genomic 
mechanisms [13].

Effects of GC on ASM

Although the bronchial epithelium may be a direct target for 
GC therapy in inflammatory airway diseases, GCs also offer clinical 
improvement in airway function.

GCs modulate contraction of ASM by suppressing increase 
in intracellular calcium level or by controlling receptors, such as 
muscarinic M2 or M3, histamine H1 receptors. GCs relax ASM 
by increasing expression of β2-adrenoceptors in a cyclic AMP-
dependent manner and increase Na+/K+ electrogenic pump activity 
in a cyclic AMP-independent manner [14].

Accumulating study results suggest that GCs not only exert 
effects on airway epithelial gene expression in asthma [15], but also 
exert effects on ASM gene expression which influence ASM function 
[16,17]. The transcriptomic profile of ASM, such as regulatory-
associated protein of mTOR (RPTOR), VANGL planar cell polarity 
protein 1 (VANGL1), family with sequence similarity 129, member A 
(FAM129A), and leprecan-like 1 (LEPREL1), has been reported to be 
associated with airway hyper-responsiveness [18]. The transcriptomic 
profile of FAM129A and synaptopodin 2 (SYNPO2) of the airway 
smooth muscle layer in asthma was changed by oral prednisolone, 
associated with an improvement in airway hyperresponsiveness [19]. 
The effect of a GC on ASM associated with cysteine-rich secretory 
protein LCCL domain-containing 2 (CRISPLD2) has been reported, 
which may be a candidate gene for pharmacogenetics in asthma that 
regulates the anti-inflammatory effects of GCs in ASM [20]. The 
transcription factor Kruppel-like factor 15 (Klf15) has been reported 
as a GR target gene that modulates airway contractility, possibly 
through regulating apoptosis and proliferation of ASM [21].

ASM cells of asthmatic patients have the potential to proliferate 
faster than cells from control subjects under defined conditions [22]. 
CCAAT/enhancer binding protein (C/EBP)s are pleiotropic proteins 
involved in inflammation, cell differentiation and tissue remodelling 
[23]. ASM cells from asthmatics are deficient in C/EBP-α, resulting 
in poor inhibition of smooth muscle proliferation in vitro [24]. BUD 
plus formoterol simultaneously activates GR and C/EBP-α, resulting 
in synergistic stimulatory effects on p21 promoter activity and 
additive inhibitory effects on proliferation [25].

Thus, GCs exert direct effects on ASM by inhibiting its contractility, 
increasing its relaxation, inhibiting cell proliferation, and preventing 
the release of proinflammatory cytokines and chemokines.

Molecular clock mechanism: Interaction of GC with clock 
components

The GC hormone system interacts with the circadian clock, 
which is an endogenous biological timing mechanism. The central 
pacemaker is the hypothalamus, which coordinates the activities of 
target organs.

GR function is determined by physical interactions with clock 
components [26,27]. Recently, molecular clock mechanisms in the 
lung have been recognized. A heterodimer of circadian locomotor 
output cycles kaput (CLOCK) and brain and muscle ARNT like 
1 (BMAL1) activates transcription via E-box enhancer element, 
resulting in Period (Per1-3) and Cryptochrone (Cry1,2) gene 
translation. PERs and CRYs inhibit CLOCK-BMAL1-mediated 
transcription. This consists of transcription-transcription feedback 
loops [28]. CLOCK/BMAL1, the core circadian clock components, 
reduce maximal GR transactivation as well as efficacy [29]. 
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The therapeutic effects of dexamethasone (DEX) depend on intact 
clock function in the airway. Genetic ablation of the clock gene Bmal1 
in bronchiolar cells disrupts rhythmic chemokine (C-X-C motif) 
ligand 5 (CXCL5) expression, resulting in exaggerated inflammatory 
responses to lipopolysaccharide (LPS) and an impaired host response 
to Streptococcus pneumoniae infection [30]. Thus, an epithelial 
circadian clock is important in controlling pulmonary inflammation 
and GC action.

Homeostatic enhancement of GC action

Regarding the homeostatic enhancement of the response to GC, 
interesting studies has been reported. Inflammatory processes may 
influence the response of bronchial epithelium to GC via cytokines 
[31]. Furthermore, pro-asthmatic cytokine-driven, MAPK-mediated, 
non-ligand-dependent GR activation that confers heightened GC 
ligand-stimulated GR signaling in ASM, suggesting proinflammatory 
cytokine-induced ligand-independent GR signaling, may importantly 
contribute to heightening GC sensitivity in asthma [32].

Mechanisms involved in GC resistance

Asthma is a heterogeneous group of disorders demonstrating 
overlapping phenotypes. The response to GCs varies considerably 
among patients with asthma [33]. Consistent differential expression 
of CCAAT/enhancer binding protein δ (CEBPD) and DNA-damage 
inducible transcript 4 (DDIT4) in asthmatics has been reported, 
suggesting that GC genes, whose changes in expression characterize 
the response to GCs, are associated with the developmental origins of 
asthma and treatment response [34].

Cellular inflammatory phenotypes of GC-R asthma, such as 
eosinophilic or neutrophilic, have been revealed. Generally, the 
phenotype of airway infiltration with eosinophils shows a better 
clinical response to GCs compared to the phenotype with neutrophils 
[35,36]. Neutrophils in the airway, T helper 17 (Th17) cells and 
interleukin (IL)-23, an IL-12-related cytokine that is essential for 
survival and functional maturation of Th17 cells, may be involved in 
the pathogenesis of severe asthma and GC resistance [37].

GRβ, a splice variant of GR (GRα), is up-regulated in GC-R 
asthma [38]. IL-23 and IL-17A/F increased the GRβ/GRα ratio in 
peripheral blood mononuclear cell (PBMC)s [39]. GRβ does not bind 
GC. The role of GRβ is not clear, but a recent study demonstrated that 
GRβ has a gene regulatory function, which may alter GC signaling, 
independent of its GRα antagonism [40].

Increased p38 MAPK activation due to inflammatory stimulation 
and impaired MKP-1 inducibility has been observed in GC-R asthma. 
Activation of p38 MAPK modulates GR function, possibly as a result 
of phosphorylation of GR. The phosphorylation of GR at serine 211 
(S211) induces GR-mediated transactivation, whereas S266 decreases 
GR transcriptional activities [41,42]. P38 MAPK acts negatively on 
GR function in ASM cells and S203 residues driving GR function 
as phosphorylation sites in the absence or presence of GCs [43]. A 
p38MAPK inhibitor (SB203580) restored GC sensitivity in PBMC 
from severe asthmatics, characterized by increased ex-vivo GC 
insensitivity, decreased GR nuclear translocation and clinically by a 
tendency for reduced lung function and higher use of oral GCs[44].

GC resistance in asthma may be attributed to an increase in the 
expression of pro-inflammatory transcription factors, such as NF-κB. 
Decreased GR expression with impaired nuclear translocation and 
subsequent inability to suppress p65 recruitment to gene promoters 
underlie the defective GC suppression of NF-κB-mediated chemokine 
expression in ASM of severe asthma [45].

Viral infections have been identified as the most frequent 
triggers of asthma exacerbations. Rhinovirus infection of the airway 
epithelium induces GC resistance, and this process requires activation 
of the NF-κB and c-Jun N-terminal kinase (JNK) pathways [46].

In asthmatics, a reduced Vit D level might be associated with 
reduced GC response. Vit D inhibits p38 MAPK activation and IL-6 
production and stimulates MKP-1 expression, demonstrating anti-
inflammatory effects in human monocytes. However, Vit D does not 
affect GR phosphorylation at S211 [47]. Patients with severe asthma 
exacerbation with Vit D deficiency showed oxidative stress and DNA 
damage in peripheral blood monocytes [48].

The airway microbiome potentially influences the presentation of 
asthma, since the airway epithelium exhibits important immunologic 
responses to microbial exposure. The existence of disordered 
microbial communities in the asthmatic airways has been highlighted 
[49]. Airway microbiome composition and diversity correlate with 
bronchial hyperresponsiveness [50]. Microbial expansion reduces 
cellular responses to GCs and influences the efficacy of GC treatment 
[51]. Gram-negative proteobacteria might be a source of airway 
endotoxin [52]. The association between higher sputum endotoxin 
level and an impaired lung function response to oral GCs, particularly 
in asthmatics who were never smokers, suggests that airway endotoxin 
might contribute to GC insensitivity in asthmatic patients [53].

Treatment not only increases but also decreases GR-dependent 
transcription. Expression of the GC-induced genes, GILZ and 
FKBP51, is up-regulated in the airways of allergen-challenged 
asthmatic subjects receiving inhaled BUD. GILZ reduces NF-κB- 
and AP-1-dependent transcription and IL-8 expression, resulting 
in an anti-inflammatory effect. On the other hand, FKBP51 may 
act negatively on GR activity. The induction of FKBP51 by GC may 
reduce therapeutic GC responsiveness. This should be taken into 
account when considering GC efficacy [54].

Taken together, these studies give us a greater understanding of 
the mechanisms of GC resistance in asthma, and this knowledge may 
lead us to develop new therapeutic drugs, including new GR agonists 
and GC-sparing therapies, in the future.

Conclusions
GCs are currently the mainstay for controlling asthma symptoms. 

There is a need to enhance the anti-inflammatory potential of GCs 
while minimizing their adverse effects. New therapies to modulate 
the GC response in patients with a poor response to GCs are needed 
to improve asthma control. From this point of view, it is important 
to investigate how the structure of gene promoters, GR number, the 
complement and abundance of co-factors, epigenetic modifications, 
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and the affinity and intrinsic efficacy of GR agonists of interest 
influence the action of GCs [55,56].
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