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Introduction

About two decades ago Prof. Manfred Lehmann [1] 
hypothesized that exhaustive chronic exercise is the mild form 
of glucocorticoid-induced myopathy. This hypothesis is based 
on the common fi ndings in Cushing’s syndrome, and high blood 
corticosteroid level established in glucocorticoid-supplemented 
and overstrained laboratory animals, and overstrained athletes 
[2]. There at the elevated hormone level proposed to be the 
main reason of development of the described myopathies [1]. 
In addition, depressed contractile proteins turnover, increased 
catabolic and decreased anabolic processes in skeletal muscle, 
particularly in the myofi brillar compartment are important 
factors in the development of the above mentioned myopathies 
[3-7]. There are many similarities in the mechanisms of 
glucocorticoid-induced and exercise-induced myopathies, but 
also a great number of differences (Fig. 1 and 2). Analysis of the 
pathogenic factors on what the hypothesis is based on, should 
show whether the features that characterize both forms of 
myopathies really exist or only seemingly to be similar.

The aim of this short review is to analyze the pathogenic 
factors induce glucocorticoid and exercise myopathies 
and to show whether exercise myopathy is the mild form 
of glucocorticoid myopathy as was hypothesized by prof. 
Lehmann about two decades ago.

Glucocortcoid-Induced Myopathy

Fast twitch (FT) muscle fi bres and their myofi brils are 
thinner in glucocorticoid-induced myopathic muscle compared 
to the sedentary group, thin and thick fi laments have 
disappeared completely from one fi fth of the area of myofi brils 
[7,8]. The intensive destruction of myofi brils and degradation 
of contractile proteins, particularly myosin heavy chain (MyHC) 
IIb isoform [9,10], are the main reasons for reduced muscle 
strength, motor activity, and weakness in glucocorticoid-
induced myopathic rats [10,11]. The destruction of myofi brils 
begins in the myosin fi laments of peripheral glycolytic muscle 
fi bres, and then spreads all over the myofi brillar apparatus 
[12,13]. Another reason is the slower myofi brillar protein 
synthesis rate and assembly of thick and thin fi laments. The 
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decrease in the relative content of the MyHC IIb isoform and 
the respective increase of the MyHC IId isoform show that 
quantitative changes in myofi brils are signifi cantly related to 
the qualitative remodeling of thick myofi laments in myopathic 
glycolytic muscle fi bres [8,10]. Changes in the myofi brils 
ultrastructure of myopathic muscle fi bres are also related to 
the functional modifi cation of glycolytic muscle fi bres. These 
modifi cations have not been observed in slow twitch (ST) 
oxidative muscle fi bres [10]. Glucocorticoid-caused wasting is 
a result of the loss of FT fi bres, their myofi brils, contractile 
proteins, and does not depend on the age [11]. The excess of 
glucocorticoids decreases the skeletal muscle regeneration and 
correlates with a decrease in satellite cells number under the 
basal lamina of skeletal muscle fi bres [5,13-15]. The intensity 
of the regeneration of skeletal muscle depends on the mass 
of muscle and its contractile properties [16]. Glucocorticoid 
myopathy induces structural changes in the ultrastructure 
of satellite cells [12,17], these changes are similar to those 
occurring in skeletal muscle fi bres where the satellite cells are 
located [4, 13, 14]. Decrease in the number of satellite cells and 
changes in their ultrastructure cause decreased regeneration 
capacity in glucocorticoid-induced myopathic muscle [8].
There is positive correlation between muscle atrophy and 
elasticity, and negative correlation between the state of 
atrophy and muscle tone [18]. Decrease in contractile protein 
myosin and in elastic proteins titin and nebulin leads to the 
reduction of muscle elasticity and the generation of tension 
in myopathic muscle [18]. Protein degradation in skeletal 
muscle fi bres, particularly in FT fi bres with low oxidative 
capacity, is mediated by the activity of ubiquitin–proteosomal 
and lysosomal pathways [19]. The activity of ubiquitin–
proteosomal pathway is signifi cantly increased in atrophying 
muscle due to transcriptional activation of E3 ligase-encoding 
genes atrogin-1 and MuRF 1 [20]. A glucocorticoid receptor 
in skeletal muscle (REDD1, KLF15) inhibits mTOR activity via 
BCAT 2 gene activation. KLF15 upregulates the expression of 
E3 ubiquitin ligases atrogin-1 and MuRF 1, causing atrophy 
in the muscle fi bre [20]. The ubiquitin–proteasome pathway, 
satellite cells in muscle, the function of related receptors and 
signalling pathways infl uence this process by tumor-induced 
systematic infl ammation [21].

Exercise-induced myopathy

As a result of exhaustive exercise (stress > recovery 
imbalance) develops the overtraining syndrome with symptoms 
of myopathy [1]. Exercise-induced myopathy is accompanied 
by the decreased synthesis rate of muscle proteins, particularly 
myofi brillar proteins, and the increased protein degradation 
rate in skeletal muscle [13,22,23,14].The process of destruction 
in myofi brils occurs in volume-induced overtrained skeletal 
muscles, mainly in FT oxidative glycolytic (O-G) muscle fi bres 
and in ST oxidative (O) muscle fi bres [13,14,17]. The relative 
content of MyHC I isoform in ST muscle fi bres increases and 
IIa isoform decreases in exercise-caused myopathic muscles. 
In FT muscle fi bres the relative content of MyHC IIb isoform 
decreases and IIa isoform increases [14,17,22,23,17]. These 
changes in MyHC isoforms show that contractile properties 
of ST and FT muscles change in different ways in accordance 

with the oxidative capacity of muscle [8,24]. In myopathic 
muscle the changes in myosin light chain (MyLC) isoforms 
are considerably smaller in comparison with subsequent 
changes in MyHC isoforms [4,17,22,23]. The most signifi cant 
changes in MyLC isoforms appear in FT muscle fi bres. The 
regeneration of MyHC IIb and MyLC 1f isoforms, having high 
affi nity to each other in FT muscle fi bres after tissue damage, 
proceeds at different speed [25]. MyLC 3f isoform regenerates 
faster than MyHC IIb isoform in FT muscle fi bres with low 
oxidative capacity. It has been shown that MyLC 1 isoform 
can negatively affect myoblast proliferation [26]. In exercise-
caused myopathic muscles myofi bril cross sectional area (CSA) 
in type FT O-G fi bres decreased 33% and in type FT G fi bres 
44% [17]. Protein degradation rate increased in both type 
O-G and G fi bres, 63% and 69% respectively, in comparison 
with the control group [17]. Myofi brils in both types of FT 
myopathic muscle fi bres are signifi cantly thinner as the result 
of more intensive protein degradation. Regeneration capacity 
is higher in type FT O-G fi bres than in type Ft G fi bres due 
to the presence of satellite cells [13,17]. Structural changes in 
exercise-caused myopathic muscle are associated with calcium 
overload, free radical formation, the decrease in energy supply 
and the reduction in the muscle defense system [27,28]. 
Exhaustive exercise is associated with enhanced oxygen 
consumption in skeletal muscles, increased lipid peroxidation 
and inhibition of key mitochondrial enzymes [29,30], as well 
as immune reaction, metabolic and cellular signal transduction 
and increasing rate of heat shock proteins (HSP) synthesis [31-
33]. The decrease in insulin-like growth factor-1 (IGF-1) and 
mechano growth factor (MGF) results in slow regeneration 
of exercise-induced myopathic muscles [34-36]. Increased 
muscle protein degradation and decreased synthesis rate in 
myopathic skeletal muscle, as well as changes in MyHC isoform 
pattern are fi bre-type specifi c [22]. Regulatory protein Tn-T 
and minor C-protein are sensitive to the increase in training 
volume and together with MyHC isoforms play the key role in 
the changes of functional properties of contractile machinery 
in exercise-induced myopathic skeletal muscle [22,23,37]. 

Comparison of changes in glucocorticoid- and exercise-
induced myopathic muscles

Decrease in CSA of muscle fi bres and myofi brils has been 
observed in case of both glucocorticoid-caused and exercise-
caused myopathies [1,7,17]. Decrease in protein synthesis, 
increase in protein degradation rate and slow protein 
turnover rate are also in principle comparable in both types of 
myopathies [5,10,14,38]. As mentioned in the Introduction, the 
Lehmann’s hypothesis is based on the similarities in the level 
of corticosteroids in blood and on the structural changes in 
skeletal muscle occurring during glucocorticoid- and exercise-
induced myopathies [1]. Despite similarities in the process 
of destruction of the myofi brillar apparatus, the respective 
myopathies develop in different muscle fi bre types [10,22,14]. 
Therefore, the main argument of the hypothesis, high level of 
corticosteroids during exhaustive exercise, is not conclusive, 
since this hormone level is maintained during a relatively short 
period and decreases in the recovery period [3]. The  destruction 
of myofi brils has been registered in glucocorticoid-caused 



007

Citation: Seene T, Alev K, Kaasik P (2019) Development of Glucocorticoid-Induced and Exercise-Caused Myopathies. Arch Sports Med Physiother 4(1): 005-009. 
DOI: http://dx.doi.org/10.17352/asmp.000010

myopathic FT G muscle fi bres [13,39] and in exercise- caused 
myopathic FT O-G fi bres [6,39,13]. This difference between the 
two types of myopathies at muscle fi bre level is the real one. 
Imaginary similarity in the process of destruction of myofi brils 
in both types of myopathies is the disarray of myosin fi laments 
from the periphery of myofi brils [13] since it occurs in different 
fi bre types and their neuromuscular junctions [13,14]. Muscle 
fi bres with higher oxidative capacity are more susceptible to 
oxidative damage by reactive oxygen species, compared to 
fi bres with low oxidative capacity and predominantly with 
MyHC IIb and IId isoforms. Higher oxidative capacity of 
muscle fi bres makes them more resistant to the degradation 
of muscle proteins, including in the myopathic muscle. 
During overtraining, type IIA muscle fi bres are recruited more 
frequently, and there are also notable structural destructions 
[28]. Due to the relatively high regenerative capacity of type 
IIA fi bres, they can maintain low-intensity muscle contraction. 
Type I and IIA muscle fi bres that have higher oxidative capacity 
are relatively resistant to the degradation of myofi brillar 
proteins [24,40]. 

In conclusion, high level of corticosteroids in blood, decrease 
of contractile proteins synthesis rate, increase of degradation 
rate, slow turnover rate and regeneration are similar in case of 
both myopathies. The analyzis of relevant pathogenic factors 
proves that the above processes occur in different fi bre types 
(Figures 1,2) and there is suffi cient ground to conclude that 
exercise-induced myopathy in type ST O and FT O-G fi bres 
occurs more mildly (fi bres are with higher oxidative capacity) 
in comparision with glucocorticoid-induced myopathy in type 
FT G fi bres (fi bres are with low oxidative capacity), but this fact 

does not prove that exercise-caused myopathy is the mild form 
of glucocorticoid-caused myopathy.

Conclusion

The destruction of myofi brils has been registered in 
glucocorticoid-caused myopathic FT G muscle fi bres and 
in exercise- caused myopathic FT O-G fi bres. This is real 
difference between the two types of myopathies at muscle 
fi bre level. Imaginary similarity appeare in the process of 
destruction of myofi brils in both types of myopathies: disarray 
of myosin fi laments from the periphery of myofi brils since 
it occurs in different fi bre types. and their neuromuscular 
junctions [33,34]. Muscle fi bres with higher oxidative capacity 
are more susceptible to oxidative damage by reactive oxygen 
species, compared to fi bres with low oxidative capacity and 
predominantly with MyHC IIb and IId isoforms. Higher oxidative 
capacity of muscle fi bres makes them more resistant to the 
degradation of muscle proteins, including in the myopathic 
muscle. During overtraining, type IIA muscle fi bres are 
recruited more frequently, and there are also notable structural 
destructions [31]. Due to the relatively high regenerative 
capacity of type FT O-G fi bres, they can maintain low-
intensity muscle contraction. ST O and FT O-G muscle fi bres 
that have higher oxidative capacity are relatively resistant to 
the degradation of myofi brillar proteins [24,30]. So, high level 
of corticosteroids in blood, decrease of contractile proteins 
synthesis rate, increase of degradation rate, slow turnover rate 
and regeneration are similar in case of both myopathies. The 
analyzis of relevant pathogenic factors proves that the above 
processes occur in different fi bre types and there is suffi cient 
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Figure 1: Changes appeared in muscle fi bres with low oxidative capacity in 
glucocorticoid-induced myopathy
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Figure 2: Changes appeared in muscle fi bres with higher oxidative capacity in 
exercise caused myopat
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ground to conclude that exercise-induced myopathy in ST 
O and FT O-G fi bres occurs more mildly (fi bres with higher 
oxidative capacity) in comparision with glucocorticoid-induced 
myopathy in FT G fi bres (fi bres with low oxidative capacity), 
but this fact does not prove that exercise-caused myopathy is 
the mild form of glucocorticoid-caused myopathy.
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