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Abstract

This paper focuses on the structural properties and interface behavior of TX-5, TX-114, and TX-100 molecules at the air/water interface. The results of the density 
profi le show that the polar O atoms of the three TX molecules are basically located on the water surface, and the whole TX molecule is almost parallel to the water surface. 
The results of the order parameters show that the order parameters of the three TX molecules on the interface are similar and relatively ordered. The TX-100 molecule has 
the largest gauche defect value. The hydration number of TX molecules at the interface was similar to that of TX molecules in micelles, and the hydration number of PEO 
chains showed obvious zigzag changes. The research of this paper provides a reference for the further development of TX series micellar and surfactant molecules in the 
fi eld of pharmaceutical and daily use.
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Introduction

Surfactant is fi rst adsorbed to the interface before forming 
micelles in an aqueous solution and has a variety of surface 
active properties, including foaming properties, fi ber cleaning 
properties, water hardness, etc. [1]. Adsorbable properties on 
solid-liquid surfaces are important for many industrial and 
technical processes (such as processing washing products, 
water treatment, enhanced oil recovery, etc.) [2], and are 
also widely used at the gas-water interface, such as food 
production, foam fractionation, and fermentation processes 
[3]. Quite a few technicians [3-7] use the adsorption properties 
of surfactants at the air/water interface to reduce surface 
tension, control foaming, foam stability, etc. Foam behavior is 
fundamentally dependent on the properties of the surfactant 
added [8] and especially its structure [9,10]. Different types of 
surfactants have different molecular structures, and most of 
the hydrophilic groups in the structure of non-ionic surfactants 
are Polyethylene Oxide (PEO) chains [11]. In the same series of 
non-ionic surfactants, different chain lengths will affect their 
adsorption properties [8]. The Triton X series is a major class of 
non-ionic surfactants, TX-114 is one of the most commercially 

and industrially used cleaners and emulsifi ers [1] and TX-100 
is also of industrial importance in the preparation of foams 
[12], so it has been widely studied and used.

Relevant experimental studies have shown that the 
adsorption effect of surfactants is an important factor in 
determining important properties such as foaming, wetting, 
emulsifi cation, solubilization, drug delivery, and biological 
activity [1]. Fainerman, et al. [13] studied the adsorption 
kinetics of TX-100 at the water-air interface using the 
maximum bubble pressure method, the inclined plate method, 
and the oscillating jet method and showed that all PEO chains 
can be located in the surface layer when the adsorption 
capacity or surface pressure of TX-100 is very small. The 
dynamic behavior of many systems (such as foam stability, 
etc.) is controlled by the adsorption of surfactant at the air/
water interface [14]. For example, Agneta, et al. [15] found in 
the experiment that foam stability is generated by the presence 
of TX-100 surfactant at the air/water interface. Computer 
simulation is an important tool for studying interface systems, 
which can obtain more information about the dynamics and 
structural properties of interface problems at the molecular 
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which is the same for all three systems. The reason for placing 
the same TX molecule in each of the upper and lower interfaces 
is to facilitate comparison.

All simulations were calculated using the Gromacs 2021 
software package [23]. The steepest descent method is used to 
minimize the energy of the initial confi guration. Then, the MD 
trajectory was obtained after 200 ns NVT simulation at 298 K 
temperature. In this paper, the trajectory of the last 30 ns is 
used to analyze the results.

Hydrogen bonding was restricted by the LINCS algorithm 
[24]. Meanwhile, periodic boundary conditions were used in all 
directions, and a time step of 2 fs was used for all simulated 
environment variables. The simulated environment is closest 
to the experimental conditions. VMD [25] program was used to 
realize all visualization of MD locus.

For comparison, the TX molecules on the upper and lower 
interfaces are placed in the same position, with the polar head 
facing the water environment and the non-polar tail facing 
the air environment. Similarly, Chen Yijian, et al. [26] used the 
MD simulation method to study the behavior characteristics 
of the double-chain anionic surfactant sodium 1-alkyl - 
decyl sulfonate at the gas/liquid interface and also placed the 
surfactant molecules on the upper and lower sides of the water 
molecular layer.

Results and discussion

Density profi le of Triton X molecules at the interface

 In the studies of Liu, et al. [27] and Parra, et al. [12], 
the distribution of atoms, ions, or polar groups in different 
positions of the surfactant molecules under study on the water 
surface was determined by calculating the density profi le 
along the Z-axis. In this paper, the density distribution of TX 
molecules on the interface was characterized by calculating 
the number densities of O atoms at different positions in three 
TX molecules and those of tail carbon and water molecules 
dependent on the Z axis, as shown in Figures 1,2.

As can be seen from the two diagrams, the O atom and the 
tail carbon atom in the TX-5 and TX-114 molecules are both 
in water and on the surface of the water. This phenomenon is 
shown at both the upper and lower interfaces. Most of the tail 
carbon atoms in the TX-100 molecules at the upper interface 
were exposed to air, while the rest of the O atoms and the atoms 
studied in the TX-100 molecules at the lower interface were 
immersed in the water. This is consistent with Fainerman, et 
al. [13] ‘s conclusion that the adsorption capacity of TX-100 at 
the air/water interface is so small that all PEO chains can be 
located in the surface layer. The number density of O atoms 
in the polar head hydroxyl group of TX molecules at the upper 
and lower interfaces is lower than that of other O atoms in the 
water, and this phenomenon occurs in all three systems. In 
addition, the number of water molecules on the interface of 
the three systems is greatly reduced, and the infl ection points 
of decline correspond to the peaks of O atoms in different 
positions of TX molecules, which means that polar O atoms 

level, which is not easy to obtain from experimental technical 
means [16]. As early as 1994, Tarek, et al. [17] conducted MD 
simulations of the structure and behavior of tetracyl-trimethyl 
ammonium bromide (C14TAB) at the air/water interface. They 
analyzed the structure of hydrocarbon chains and found that 
the chains were highly disordered and their internal structure 
depended on vertical position relative to the interface. Later, 
Xu, et al. [18] also used the MD simulation method to study the 
infl uence of Polyvinyl Alcohol (PVA) molecules on the structure 
of sodium dodecyl ether sulfate containing a polyethylene 
oxide group (SLE1S) adsorbed on the air/water interface. 
The results showed that increasing the surface density of 
SLE1S would increase the interface thickness. And forces 
SLE1S and PVA molecules to migrate to varying degrees into 
the air (actually the vacuum).In addition, Chanda, et al. [19] 
studied the adsorption properties of monomolecular dodecyl 
hexaethylene glycol (C12E6) at the air/water interface by using 
MD simulation at constant volume and temperature. The study 
showed that due to the strong interaction between surfactants 
and water, its long polar head group preferred the water layer. 
Other researchers have explored the related properties of TX-
100, another very important nonionic surfactant, at the air/
water interface, For example, Parra, et al. [12] studied the 
effect of TX-100 on the interfacial activity of ionic surfactants 
SDS, CTAB and SDBS at the air/water interface by using MD 
simulation method and found that the presence of TX-100 at 
the air/water interface would reduce the interface thickness of 
water layer.

In order to make full use of the interfacial activity of the 
TX family of surfactants, the structural characteristics of TX-
5, TX-114 and TX-100 molecules with different PEO chain 
lengths at the air/water interface and their interactions with 
water were investigated by molecular dynamics simulation. 
The differences and connections between the three systems 
were compared in various aspects.

Simulation detail

Materials and methods 

 The chemical structures and basic information of Triton-X 
are from the ATB force fi eld.

 Firstly, Gaussian 09 software [20] was used to optimize the 
geometric structure of TX-5, TX-114, and TX-100 molecules, 
and the basic group was B3LYP/6-31g(d). The structure is 
then submitted to ATB [21,22] to generate bond and non-bond 
resultant fi eld parameters. This parameter is compatible with 
the Gromos 54A7 force fi eld parameter. Water molecules use 
an SPC model.

The simulation uses a 10×10×30 nm3 rectangular box with 
the Z axis perpendicular to the interface. In preparation for the 
initial confi guration of the simulation, a water box (10×10×10 
nm3) was placed in the center of the box and fi lled with water 
molecules. Then, two identical TX molecules are placed on both 
sides of the water box to form the water-air interface. The size 
of the upper and lower air boxes on both sides is 10×10×10 nm3, 
and the TX molecules are perpendicular to the water surface, 
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occupy a certain spatial position in the water surface. This result 
is similar to the simulation result obtained by Parra, et al. [12] 
that the existence of TX-100 at the air/water interface reduces 
the interface thickness of the water surface. In addition, the 
number density peaks of these atoms selected in the three TX 
molecular systems appear in very uniform positions, and the 
number density peaks of these atoms selected in each system 
are basically the same in the upper and lower interfaces, about 
0.025.

Structure of Triton X molecular chain at the interface

The chain structure of surfactant molecules is usually 
characterized by order parameters, chain length, chain 
orientation, and Gauche defects. In this study, these indicators 
were measured to characterize the structure of three TX 
molecular chains at the air/water interface.

Order parameter: In order to characterize the order degree 
of TX molecules on the interface, the order parameters of C 
atoms in different positions of TX molecules were calculated 
in this paper. One of the C atoms with similar chemical 
environments was selected for study, as shown in Figure 3. The 
order parameters are calculated using this formula.

3 cos 1
2

SZ
² Z  



Where, is the included Angle between the Z-axis and the 
molecular axis of the simulated box, defi ned as the vector 
from Ci−1 to Ci + 1. The mean value over time is shown in 
parentheses. The range of the order parameter is [-1/2,1]. The 
larger the value, the higher the disorder of the chain (the more 
parallel to the z-axis), and the smaller the value, the more 
ordered (the more perpendicular to the z-axis). In the case of 
isotropic orientation, the value is zero [27]. As shown in the 
Figure, the chain order degree of TX-5, TX-114, and TX-100 
molecules all showed a similar change trend. On the whole, TX 
molecules were relatively ordered on the interface and were 
almost perpendicular to the Z axis. The order parameter values 
of the three systems are TX-5, TX-114, and TX-100.

Length of surfactant chain: The length of the TX molecular 
chain is one of the basic characteristics of chain structure. 
This section determines the distance between the O atom 
at different positions in the TX molecule and the H atom in 

Figure 1: The O atoms and tail quaternary carbon at different positions in the TX molecule depend on the number density of the Z axis Note1. See the molecular diagram on 
the right for the labels of each O atom and tail quaternary carbon atom.

Figure 2: The O atom in the water molecule depends on the number density of the 
Z axis.
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the polar head hydroxyl group relative to the C atom in the 
terminal methyl group, as shown in Figure 4. TX-5 molecules 
at the upper interface showed an upward trend from O1 to O4, 
a downward trend from O4 to O6, and a weak increase in H42, 
indicating that the molecular chain had obvious bending and 
presented a symmetrical chain structure. The TX-5 molecule in 
the lower interface increased signifi cantly from O1 to O6. The 
TX-114 molecule showed a nearly uniform upward trend from 
O1 to O8. The length variation trend of the TX-100 molecule 
increases gradually in the upper interface but fl uctuates to a 
certain extent in the lower interface. The same TX molecule has 
different lengths on both the upper and lower water surfaces. In 
addition, the length of the three TX molecules at the interface 
is smaller than that of A free molecule optimized by quantum 
chemistry (26.073 Å for TX-5, 33.028 Å for TX-114, and 38.282 
Å for TX-100). 

Orientation of surfactant chain: In order to further explore 
the orientation of the TX molecular chain on the interface, this 
paper calculates the Angle between the Z axis and the vector 
from the O atom at different positions to the C atom of the 
terminal methyl group in the TX molecule, as shown in Figure 
5. The angular distribution of TX-5 and TX-114 molecules 
increases at the upper interface as the O atom gets closer and 
closer to the polar head position, but the opposite is true at the 
lower interface. The Angle distribution of TX-100 molecules 
increased to a stable and then increased at the upper interface, 
and vice versa at the lower interface. The included Angle 
between the whole TX molecule (the vector where the O atom 
in the polar head hydroxyl group points to the terminal C atom) 
and the Z axis is greater than 80° in the three systems, which is 
consistent with the conclusion obtained in section 3.2.1 that the 
TX molecule is almost perpendicular to the Z axis.

Gauche defects: In order to further characterize the 
conformation of the TX molecular chain on the interface, this 
paper explored by calculating the probability distribution of 
gauche dihedral Angle in the TX molecule (Figure 6). As can 
be seen from the Figure, the probability value of gauche in 
the three systems decreases according to the sequence TX-
100>TX-5>TX-114, indicating that the TX-100 molecule 
is the most stable on the interface. It is worth noting that 
the probability value of gauche in each system presents a 

wavy trend from the terminal C position to the polar head C 
position. The morphological structure of a single TX molecule 
at the air/water interface provides a certain reference for the 
morphological and structural characteristics of multiple TX 
molecules at the interface.

Figure 3: The order parameters of C atoms at different positions in TX-5, TX-114, and TX-100 molecules, see the molecular diagram on the right for the labels of C atoms 
at different positions.

Figure 4: The distance between the O atom at different positions in TX-5, TX-114, 
and TX-100 molecules and the H atom in the polar head hydroxyl group relative to 
the C atom in the terminal methyl group Note1. See the molecular diagram on the 
right for the label of each atom.
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Interaction between TX molecules and water on the in-
terface

In this section, the hydration number, hydrogen bond 
number, and hydrogen bond relaxation time of atoms in 
different positions of three TX molecules were calculated to 
characterize the interaction of each TX molecule with water at 
the air/water interface. In order to increase the reliability of the 
simulation results, the same TX molecule’s interaction with 
water at the upper and lower interfaces was also characterized 
in this paper.

Hydration number: In this paper, the hydration number 
of C and O atoms in different positions of TX-5, TX-114 and 
TX-100 surfactant molecules was calculated to characterize the 
interaction between TX molecules and water at the interface. 
One of the C atoms with a similar chemical environment is 
selected for study, as shown in Figure 7. The hydration number 
is obtained by calculating the integral of the Radial Distribution 
Function (RDF) of the selected water molecules around the C or 
O atom in the range of 0.35 nm [28,29]. As shown in the Figure, 
the hydration number of the three is basically the same. The 
hydration number of the octyl chain in the whole TX molecule is 
the lowest, all of which are less than 0.5, the hydration number 
of the benzene ring increases, and the hydration number of the 
PEO chain shows an obvious zigzag trend, that is, the hydration 
number of the O atom in each EO unit is much larger than that 

Figure 5: The angle between the vector from the O atom at different positions in the TX molecule to the C atom at the terminal methyl group and the Z axis Note1. The label 
of each atom is shown in the molecular diagram on the right side of Figure 4.
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Figure 6: The gauche probability distribution function at position C.

Figure 7: The hydration number of C atoms and O atoms at different positions in TX-
5, TX-114, and TX-100 surfactant molecules. Note1�The Triton X molecular diagram 
on the right describes the atoms corresponding to each number, in which the dark 
green ball represents the C atom, the red ball represents the O atom, and the gray-
white ball represents the H atom.

of the C atom, and their value is not more than 3. The hydration 
number of the polar head hydroxyl group reached the maximum 
(>8), which was largely due to the different steric hindrances 
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of atoms at different positions. This is similar to the trend of 
hydration number of the three TX micelles described in section 
3.3.1. In addition, the hydration number of the EO unit in the 
TX-5 molecule decreases as it gradually approaches the polar 
head, and the hydration number of the EO unit in the TX-114 
and TX-100 molecules fl uctuates slightly. This phenomenon is 
due to the different distribution of TX molecules in water, the 
different conformation of the chains, and the different amounts 
of contact with water molecules [30-40]. It can be seen that the 
three TX molecules interact strongly with water, especially the 
hydration number of the PEO chain is signifi cantly higher than 
that of the PEO chain in the micellar formation, that is, a single 
TX molecule is not easy to bubble at the air/water interface and 
its bubble stability is relatively low.

Hydrogen bond number: The geometric criterion for the 
existence of hydrogen bonds used in this paper is that the 
distance between donor and recipient pairs is within 3.5 Å, and 
the Angle between hydroxyl and oxygen atoms is less than or 
equal to 30°. Figure 8 shows that the hydrogen bond number 
of O atoms at different positions of the three systems is “small 
at both ends and large in the middle”. Moreover, the hydrogen 
bond number of the O atom in the middle of TX-114 and TX-
100 molecules fl uctuates signifi cantly, which is similar to the 
trend of the hydration number of the O atom in Section 3.3.1. 
Surprisingly, the hydrogen bond number of O atoms in the 
polar head hydroxyl group decreases signifi cantly. This means 
that very few of the water molecules it mixes with can form 
hydrogen bonds with it. In the TX-5 system, the hydrogen 
bond number of the O1 atom is the lowest, about 0.3, and the 
hydrogen bond number of the O2 atom increases signifi cantly, 
reaching 0.475. Then, the hydrogen bond number of the O6 
atom decreases, reaching 0.31. In the TX-114 system, the O1 
atom also has the lowest hydrogen bond number, about 0.29, 
and then the hydrogen bond number increases signifi cantly, 
reaching 0.46 for the O2 atom and 0.3 for the O8 atom. In the 
TX-100 system, the hydrogen bond number of the O1 atom 
is 0.27-0.3 and then the hydrogen bond number increases 
signifi cantly, reaching 0.44 to the O2 atom, and the hydrogen 
bond number of the O10 atom is about 0.3 [41-80].

Hydrogen bond relaxation time: In order to further analyze 
the hydrogen bond kinetic properties of TX molecules at the 
interface, the relaxation times of hydrogen bonds between 

O atoms and water molecules at different positions in TX 
molecules and between the outermost hydroxyl group and O 
atoms in water molecules were calculated (Figure 9). As can 
be seen from the Figure, the decay curves of the three systems 
gradually become gentle when they reach 10 ps. Among them, 
the decay curves of the outermost hydroxyl group and the O 
atom in the water molecule of the TX-5 and TX-114 systems 
decline the fastest, followed by that of the polar head O atom 
and the water molecule. In the TX-100 system, the decay rates 
of the two corresponding decay curves are similar and the 
fastest, indicating that it is diffi cult for polar head O atoms 
to form hydrogen bonds with water molecules, which is 
consistent with the result in section 3.3.2 that the number of 
hydrogen bonds of polar head O atoms is very low. In addition, 
the decay curve of the O1 atom connected with the benzene 
ring and water molecule also showed a very fast decay rate. The 
decay rate of the decay curve between the O atom and the water 
molecule in the remaining position is relatively slower, so the 
number of hydrogen bonds formed is higher [81-132].

Conclusion

 The structure of three TX molecules with different PEO chain 
lengths at the air/water interface was studied by molecular 
dynamics simulation. Simulation results showed that the 
number density of O atoms in the polar head hydroxyl group 
of TX-5, TX-114, and TX-100 molecules was lower than that 
of other O atoms and occupied a certain spatial position in the 
water surface. In addition, the three TX molecules are relatively 
ordered on the interface, and all are almost perpendicular to 
the Z axis. The Angle between the TX molecule and the Z axis is 
greater than 80 degrees in all three systems. Each of the three 
TX chains has a different structure at the air/water interface and 
is somewhat shorter in length. The probability value of gauche 
in the three systems decreased by this sequence TX-100>TX-
5≈TX-114. Notably, the number of hydrogen bonds of the O 
atom in the polar head hydroxyl group decreased signifi cantly, 
meaning that very few water molecules could form hydrogen 
bonds with it. This study has a certain guiding signifi cance for 
better control of the foaming property and foam stability of TX 
molecules. In addition, the study of TX molecules at the air/
water interface provides a certain reference for the exploration 
of TX molecules forming micelles when they reach the critical 
micelle concentration.

Figure 8: The number of hydrogen bonds formed between O atoms at different positions in TX-5, TX-114, and TX-100 molecules and water molecules, the labels of each O 
atom are shown in the molecular schematic diagram in Figure 1.
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